The realization space is [1 1 x1 - 1 0 0 1 1 x1^2 - x1 0 x1^2 - x1 + 1 x1^2 - x1 + 1] [1 0 x1 1 0 1 0 x1^2 x1^2 + 1 x1^2 + 1 x1^3] [0 0 0 0 1 1 x1 x1^2 - x1 + 1 x1^2 - x1 + 1 x1^2 - x1 + 1 x1^3 - x1^2 + x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (2*x1^11 - 4*x1^10 + 8*x1^9 - 9*x1^8 + 9*x1^7 - 6*x1^6 + 3*x1^5 - x1^4) avoiding the zero loci of the polynomials RingElem[x1^3 - 2*x1^2 + x1 - 1, x1, x1 - 1, x1^3 - x1^2 - 1, x1^2 + 1, 2*x1^2 - x1 + 1, x1^5 - x1^4 + x1^3 - 2*x1^2 + x1 - 1, x1^3 + x1^2 + 1, x1^2 - x1 + 1]